ASX RELEASE

BLACKEARTH EXTENDS HIGH GRADE DRILL INTERVALS AT RAZAFY NORTHWEST

Highlights

- High grade assay results have extended the recently announced high grade intersections at Razafy Northwest
- Previously reported intersections have now been extended and include:
 - **32.7m at 16.3%TGC** (from 5m) including **15.3m at 25.2%TGC**
 - **39.9m at 9.4% TGC** (from 3m) including **16.0m at 14.12%TGC**
 - 38.2m at 11.9% TGC (from surface)
 - 25.8m at 12.9%TGC (from 17m)
- Preliminary metallurgical test work has produced concentrate with elevated grades up to **98.4%TGC**
- Remaining drill assay results to be received and reported in early October
- A **New Resource Model** will be finalised as soon as possible after final results are received.

BlackEarth Minerals NL (**ASX: BEM**) ("**BlackEarth"** the "**Company"**) is pleased to provide an update of exploration activities at the Maniry Graphite Project ("Project") located in southern Madagascar.

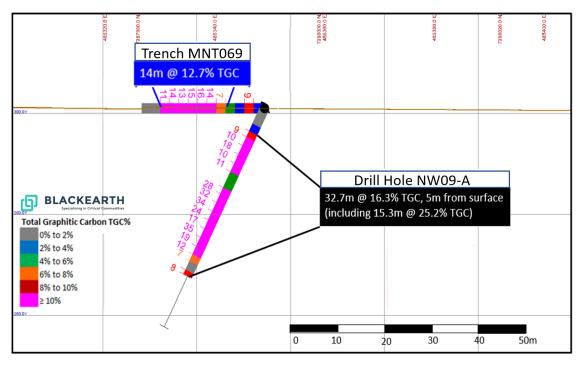


Figure 1 – Cross section based on drill hole NW09-A and trench MNT069 – Razafy Northwest

Final results from the Razafy Northwest drilling campaign are expected shortly and an announcement made early October. The results will be used to update the Company's Resource inventory which will be released to the market in Q4, 2021.

Preliminary metallurgical test work at ALS Perth, involved the testing of 6 samples produced from the diamond drilling program at Razafy Northwest. Head grades ranged from 3.64% to 20.82%TGC. First pass metallurgical test work showed excellent results, with initial flotation tests achieving high grade concentrate 98.4%TGC with recoveries generally above 90%

Commenting on the latest Razafy Northwest drilling results, BlackEarth Managing Director, Tom Revy, said:

"These latest results demonstrate the enormous potential value that exists in the northwest area. The increased widths, continuity of high grade and metallurgical results show that the Maniry deposit (which includes the Razafy and Razafy NW areas) is comparable to the best projects in the world.

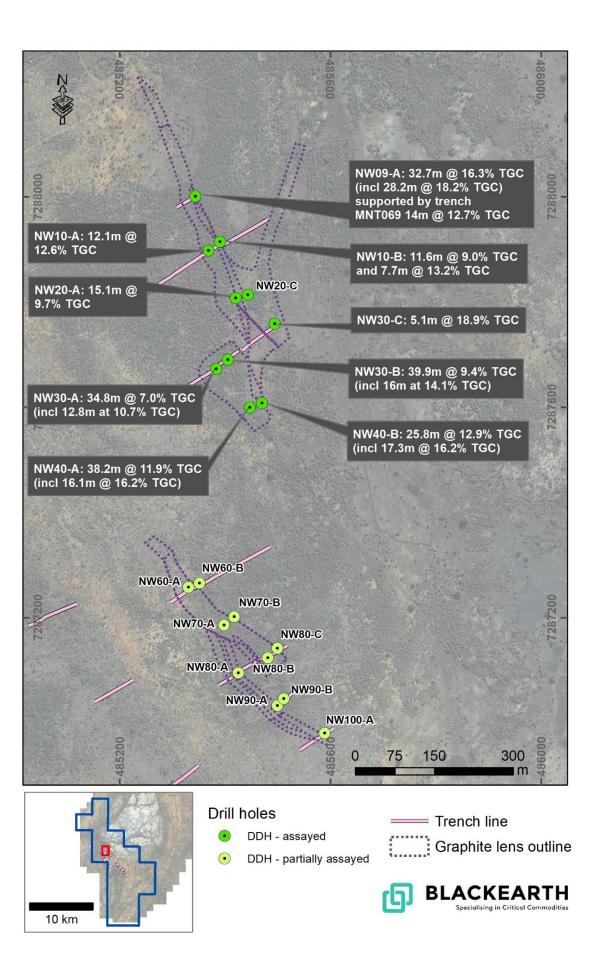
Given the Project's sensitivity to feed grade, the results attained to date from the Razafy Northwest area, have the potential to significantly enhance our total Project economics as per the table below."

	NPV	IRR				
6.2%	USD103M	42%				
7.2%	USD152M	55%				
8.2%	USD201M	68%				
9.2%	USD250M	81%				
10.2%	USD299M	94%				
Data derived from sensitivity graphs released to ASX 30 Jan 2019						
	7.2% 8.2% 9.2% 10.2%	 6.2% USD103M 7.2% USD152M 8.2% USD201M 9.2% USD250M 10.2% USD299M 	6.2% USD103M 42% 7.2% USD152M 55% 8.2% USD201M 68% 9.2% USD250M 81% 10.2% USD299M 94%			

Table 1 – Maniry NPV and IRR Sensitivities to an Increase in Feed Grade

This announcement is authorised for release by Mr Tom Revy, Managing Director.

CONTACTS


Tom Revy David Round Jane Morgan
 BlackEarth Minerals NL
 08 6158 9916 | 0411 475 376

 BlackEarth Minerals NL
 0411 160 445

 Investor and Media Relations
 0405 555 618

BlackEarth encourages investors to update their contact details to stay up to date with Company news and announcements here: <u>http://www.blackearthminerals.com.au/update-details/</u>

For more information – www.blackearthminerals.com.au

Competent Person's Statement

The information contained in this report relates to exploration activities and information compiled by Mr Pascal Marchand, a member of Ordre des Géologues du Québec. Mr Pascal Marchand has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves." Mr Marchand consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Forward Looking Statements

Some of the statements appearing in this announcement may be in the nature of forward-looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which BlackEarth operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement.

No forward-looking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by a number of factors and subject to various uncertainties and contingencies, many of which will be outside the Company's control.

The Company does not undertake any obligation to update publicly or release any revisions to these forwardlooking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of the Company's Directors, employees, advisors or agents, nor any other person, accepts any liability for any loss arising from the use of the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

This announcement is not an offer, invitation or recommendation to subscribe for, or purchase securities by the Company. Nor does this announcement constitute investment or financial product advice (nor tax, accounting or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Sampling techniques Drilling • the drill hole database only consists of diamond drill holes • sampling consists of 2m composite samples of quarter core with breaks at lithological discontinuities - typical 3-5Kg • samples are cul using a diamond blade core saw • duplicate samples are collected every 20 th sample for QAQC purposes • standards (CRMs) are inserted every 20 th sample for QAQC purposes • standards (CRMs) are inserted every 20 th sample for QAQC purposes • sampling is considered to be comprehensive and representative • quarter cores are sent for analysis, the remaining core material is retained and stored in BEM's secure core shed Trenching • trenches are dug perpendicular to the strike of mineralised units to a depth of approximately 0.5 to 1 m • trained geologists log and systematically sample the trenches using a rock hammer at 2m intervals • CRMs are inserted -every 20 th samples for QAQC purposes Drilling techniques • diamond drilling only • core recovery is routinely recorded every metre by trained geologists trecovery • core recovery is routinely recorded every metre by trained geologists logging includes descriptions of mineralisation, structural and lithological aspects of the core and is digitally recorded using an industry standard code system cores are systematically photographed • the data collected offers sufficient detail for the purpose of interpretation and further studies
 The drill note database only consists of diamond drill notes sampling consists of 2m composite samples of quarter core with breaks at lithological discontinuities - typical 3-5Kg samples are cut using a diamond blade core saw duplicate samples are collected every 20th sample for QAQC purposes standards (CRMs) are inserted every 20th sample for QAQC purposes sampling considered to be comprehensive and representative quarter cores are sent for analysis, the remaining core material is retained and stored in BEM's secure core shed Trenching trenches are dug perpendicular to the strike of mineralised units to a depth of approximately 0.5 to 1 m trained geologists log and systematically sample the trenches using a rock hammer at 2m intervals CRMs are inserted -every 20th samples for QAQC purposes Drilling techniques diamond drilling only core size is HQ typically in 0.5-1.5m runs Drilling all drill holes are logged by qualified and experienced geologists logging includes descriptions of mineralisation, structural and lithological aspects of the core and is digitally recorded using an industry standard code system cores are systematically photographed the data collected offers sufficient detail for the purpose of interpretation and further studies
 trenches are dug perpendicular to the strike of mineralised units to a depth of approximately 0.5 to 1 m trained geologists log and systematically sample the trenches using a rock hammer at 2m intervals CRMs are inserted ~every 20th samples for QAQC purposes Drilling techniques diamond drilling only core size is HQ typically in 0.5-1.5m runs Drilling core recovery is routinely recorded every metre by trained geologists recovery is trained logged by qualified and experienced geologists logging includes descriptions of mineralisation, structural and lithological aspects of the core and is digitally recorded using an industry standard code system cores are systematically photographed the data collected offers sufficient detail for the purpose of interpretation and further studies Trenching all trenches are logged by qualified and experienced geologists
approximately 0.5 to 1 m • trained geologists log and systematically sample the trenches using a rock hammer at 2m intervals • CRMs are inserted ~every 20 th samples for QAQC purposes Drilling techniques • diamond drilling only • core size is HQ typically in 0.5-1.5m runs Drill sample recovery • core recovery is routinely recorded every metre by trained geologists • recovery • core recovery is typically +80% within weathered rock, and +95% in fresh rock Logging Drilling • all drill holes are logged by qualified and experienced geologists • logging includes descriptions of mineralisation, structural and lithological aspects of the core and is digitally recorded using an industry standard code system • cores are systematically photographed • the data collected offers sufficient detail for the purpose of interpretation and further studies Trenching • all trenches are logged by qualified and experienced geologists
 CRMs are inserted ~every 20th samples for QAQC purposes Drilling techniques diamond drilling only core size is HQ typically in 0.5-1.5m runs Drill sample recovery core recovery is routinely recorded every metre by trained geologists recovery is typically +80% within weathered rock, and +95% in fresh rock Logging Drilling all drill holes are logged by qualified and experienced geologists logging includes descriptions of mineralisation, structural and lithological aspects of the core and is digitally recorded using an industry standard code system cores are systematically photographed the data collected offers sufficient detail for the purpose of interpretation and further studies Trenching all trenches are logged by qualified and experienced geologists
Drilling techniques • diamond drilling only core size is HQ typically in 0.5-1.5m runs Drill sample recovery • core recovery is routinely recorded every metre by trained geologists • recovery • recovery is typically +80% within weathered rock, and +95% in fresh rock Logging Drilling • all drill holes are logged by qualified and experienced geologists • logging includes descriptions of mineralisation, structural and lithological aspects of the core and is digitally recorded using an industry standard code system • cores are systematically photographed • the data collected offers sufficient detail for the purpose of interpretation and further studies Trenching • all trenches are logged by qualified and experienced geologists
Drill sample recovery• core recovery is routinely recorded every metre by trained geologists • recovery is typically +80% within weathered rock, and +95% in fresh rockLoggingDrilling • all drill holes are logged by qualified and experienced geologists • logging includes descriptions of mineralisation, structural and lithological aspects of the core and is digitally recorded using an industry standard code system • cores are systematically photographed • the data collected offers sufficient detail for the purpose of interpretation and further studiesTrenching • all trenches are logged by qualified and experienced geologists
 recovery recovery is typically +80% within weathered rock, and +95% in fresh rock Logging all drill holes are logged by qualified and experienced geologists logging includes descriptions of mineralisation, structural and lithological aspects of the core and is digitally recorded using an industry standard code system cores are systematically photographed the data collected offers sufficient detail for the purpose of interpretation and further studies Trenching all trenches are logged by qualified and experienced geologists
 all drill holes are logged by qualified and experienced geologists logging includes descriptions of mineralisation, structural and lithological aspects of the core and is digitally recorded using an industry standard code system cores are systematically photographed the data collected offers sufficient detail for the purpose of interpretation and further studies Trenching all trenches are logged by qualified and experienced geologists
 all trenches are logged by qualified and experienced geologists
 logging includes descriptions of mineralisation, structural and lithological aspects of the encountered rocks and is digitally recorded using an industry standard code system
 the data collected offers sufficient detail for the purpose of interpretation and further studies
Sub-sampling techniques andDrilling•quarter cores are cut using a diamond core saw and collected for assaying
 sample preparation 2 metre composite sampling is deemed to be comprehensive and representative for the style/type of mineralisation under investigation duplicate samples are taken (remaining quarter core) every 20th sample sample preparation from quarter core to pulp is undertaken at BEM's sample

Criteria	Commentary
	preparation facility in Antananarivo (former Intertek-Genalysis facility)
	Trenching
	 the base of the trench is chipped to obtain a representative sample over 2m intervals. Although the sampling technique is not ideal, the technique is deemed satisfactory for this exploratory phase of work QAQC measured are deemed satisfactory for this type of sampling and exploratory phase of work the sample size (3Kg) is deemed satisfactory to the grain size of the material being sampled sample preparation from 3Kg chip sample to pulp is undertaken at BEM's sample preparation facility in Antananarivo
Quality of assay	Drilling & Trenching
data and laboratory tests	 assaying is completed by Intertek Genalysis in Perth (Aus) samples are pulverised to 75 microns, roasted to 420°C and digested with a weak acid. Final analysis is undertaken by CS analyser (Intertek code: C73/CSA and CSA03) for sulphur, total carbon and graphitic carbon a portable XRF scan is also completed and provides a complete analytical measurement suite for 37 elements standards and duplicates (duplicates only for core, not for trench samples) are inserted every 20th sample by the BEM technical team in addition to Intertek's internal QAQC routine procedure.
Verification of sampling and assaying	 no twin holes have been completed all data is recorded digitally using a standard logging system and files are stored in an industry standard database
Location of data points	 Drilling Razafy Northwest: topography and current collar survey data is based on measurements taken on GPS handheld device. All collars will be located using a DGPS (accurate to 1cm). Projection and grid systems used: UTM (WGS84 Z38S) the maximum drillhole depth is 51m. Downhole survey was not completed for this investigative drilling campaign as minimal deviation were recorded for drillhole of that depth in the same geological context at Razafy (1km south east of Razafy Northwest)
	 Trenching all XYZ surveying is collected using a handheld Garmin GPS accurate to ±4m Projection and Grid system used: UTM (WGS84) Z38S
Data spacing and distribution	 Drilling the Razafy Northwest drill hole grid spacing is 100m along strike by 30m across strike with positioning of the drillholes based on surface mapping of the graphite outcrops the drill hole spacing allowed to follow the graphitic mineralisation outlines from section to section and down dip
	Trenching
	 the geologist in charge of the program systematically samples all visible mineralised units as well as the lithologies either side of these this data is not thought to be appropriate for resource estimation purposes, but can be used to define the mineralisation boundaries at surface no sample compositing has been applied.

Criteria	Commentary
Orientation of data in relation to geological structure	 Drilling the drilling grid matches the strike of the orebody the orientation of the drilling is not expected to introduce sampling bias as a holes intersect the mineralisation at a sufficient angle to the dip of the orebon in addition, the mineralisation envelopes will be interpreted in three-dimensional structure of the dimensional st
	Trenching
	 the trenches are oriented perpendicular to the perceived orientation of the outcropping mineralisation, but since sampling is two-dimensional and not perpendicular to the dip of mineralisation, reported intercepts will be wider than the true width of the mineralised unit
Sample security	 Drilling full cores are kept in core trays systematically numbered and photographec site then on site before being transported to BEM's sample preparation faci in Antananarivo cores are cut and sampled, and pulps are prepared at BEM's sample
	 cores are cut and sampled, and pulps are prepared at DLM's sample preparetion facility in Antananarivo sample pulps are freighted by plane to Intertek Genalysis in Perth (Aus) for assaying and portable XRF scanning
	 the remaining core samples are kept in a secure facility adjacent to BEM's offices in Antananarivo
	Trenching
	 samples are packaged and stored in secure storage from time of gathering sample preparation
Audits or reviews	 sampling procedures have not been reviewed by external auditors

Griteria	Commentary
Mineral tenement and land tenure status	 work was undertaken upon permit PR25605 the tenement is located within the inland South West of Madagascar approximately centred on the townships of Fotradrevo and Ampanihy. the tenements is held 100% by Mada Aust Ltd. A wholly owned subsidiary of BlackEarth Minerals Ltd no overriding royalties are in place there is no native title agreement required tenure does not coincide with any historical sites or national parkland semi-arid, thinly vegetated, relatively flat to low lying hills with sub-cropping rock the tenement is currently secure and in good standing.
Exploration done by other parties	 regional mapping by BRGM
Geology	The project overlies a prominent 20km wide zone consisting of a folded assemblage of graphite and quartz-feldspar schists (<60% graphite), quartzite and marble units, with lesser intercalated amphibolite and leucogneiss. This zone, termed the Ampanihy Belt is a core component of the Neoproterozoic Graphite System. The belt is interpreted as a ductile shear zone accreted from rocks of volcanic and sedimentary origins.

Criteria	Commentary
Drill hole Information	Refer to tables in Appendix 1 and Appendix 2
Data aggregation methods	NA
Relationship between mineralisation widths and intercept lengths	the orientation of the drilling in azimuth and dip was chosen in accordance with the perceived geometry of the mineralisation obtained from outcrop mapping and trench information. However, until assays are received for all drillholes and the mineralisation envelopes are interpreted, downhole lengths reported in Appendix 2 and in the text body do not necessarily correspond to the true width of the graphitic mineralisation present
Diagrams	Refer to figures within text
Balanced reporting	The text and list of currently available assays presented in Appendix 2 emphasise the fact that the exploration results reported here are partial and correspond to the first batch of assay results received so far by BlackEarth for only 10 drillholes (also partial results for these drillholes) out of 21 drillholes drilled
Other substantive exploration data	metallurgical testing of Razafy Northwest representative material is presently being completed at ALS Global (Perth) but results are not available at the time of the announcement
Further work	 all assay results to be received interpretation of the mineralisation envelopes resource estimation

Section 3 Estimation and Reporting of Mineral Resources NO ESTIMATION OF MINERAL RESOURCES REPORTED

Appendix 1

Razafy Northwest – Drillhole Location List

Number	Drillhole	Easting	Northing	RL	Azimuth	Dip	Drillhole Depth
1	NW-09-A	485,345	7,288,000	301	233	-60	50.22
2	NW-10-A	485,370	7,287,900	301	233	-60	50.86
3	NW-10-B	485,395	7,287,920	301	233	-60	50.08
4	NW-20-A	485,420	7,287,800	302	233	-60	50.05
5	NW-20-B	485,360	7,287,775	302	233	-60	16.72
6	NW-20-C	485,450	7,287,815	302	233	-60	28.62
7	NW-30-A	485,380	7,287,670	302	233	-60	50.32
8	NW-30-B	485,405	7,287,690	302	233	-60	51.22
9	NW-30-C	485,495	7,287,759	302	233	-60	50.07
10	NW-40-A	485,450	7,287,595	302	233	-60	51.12
11	NW-40-B	485,475	7,287,610	302	233	-60	50.04
12	NW-60-A	485,320	7,287,250	302	233	-60	46.72
13	NW-60-B	485,345	7,287,270	302	233	-60	51.22
14	NW-70-A	485,395	7,287,190	308	233	-60	50.02
15	NW-70-B	485,420	7,287,205	308	233	-60	50.08
16	NW-80-A	485,425	7,287,095	308	233	-60	47.72
17	NW-80-B	485,475	7,287,125	308	233	-60	25.72
18	NW-80-C	485,500	7,287,145	308	233	-60	51.22
19	NW-90-A	485,500	7,287,033	302	233	-60	50.12
20	NW-90-B	485,512	7,287,046	302	233	-60	50.17
21	NW-100-A	485,590	7,286,981	300	233	-60	51.22

Appendix 2

Razafy No	rthwest	- Drillhole assays results received as of 17th of September 2021							
Drillhole	from	to	Carbon %	Total Graphitic Carbon%	Sulphur%	SampleName	Core Size	Sample Length	
NW09-A	0.0	2.0	1.33	1.30	0.16	MNDS004346	HQQC	:	
NW09-A	2.0	4.0	1.69	1.50		MNDS004347	HQQC		
NW09-A	4.0	5.7	2.46	2.40		MNDS004348	HQQC	1.7	
NW09-A	5.7	7.0	9.28	9.30		MNDS004349	HQQC	1.3	
NW09-A	7.0	9.0	11.64	10.30	0.09	MNDS004350	HQQC		
NW-09-A	9	11	19.11	17.8	0.62	MNDS004351	HQQC		
NW09-A	11.0	13.0	10.51	10.10	1.19	MNDS004352	HQQC		
NW09-A	13.0	15.0	11.11	10.90	2.90	MNDS004353	HQQC		
NW09-A	15.0	17.0	4.90	4.70	0.88	MNDS004354	HQQC		
NW09-A	17.0	18.6	4.50	4.40	1.03	MNDS004356	HQQC	1.0	
NW09-A	18.6	20.0	29.01	28.40	2.16	MNDS004357	HQQC	1.4	
NW09-A	20.0	22.0	33.70	32.40	5.73	MNDS004358	HQQC	:	
NW09-A	22.0	24.0	34.95	34.10	9.18	MNDS004359	HQQC		
NW09-A	24.0	26.0	24.82	24.40	5.47	MNDS004360	HQQC		
NW09-A	26.0	28.0	17.02	16.50	6.26	MNDS004361	HQQC		
NW09-A	28.0	30.0	36.06	35.10		MNDS004362	HQQC		
NW09-A	30.0	32.0	18.92	18.90	7.45	MNDS004364	HQQC		
NW09-A	32.0	33.9	11.98	11.90	9.21	MNDS004366	HQQC	1.9	
NW09-A	33.9	35.4	7.11	6.80	8.91	MNDS004367	HQQC	1.5	
NW09-A	35.4	37.4	1.53	1.50	2.57	MNDS004368	HQQC	1.9	
NW09-A	37.4	38.4	8.11	8.10	13.03	MNDS004369	HQQC	1.0	
NW10-A	0.1	1.0	14.08	14.30	0.09	MNDS004306	HQQC	0.9	
NW10-A	1.0	2.5	35.22	34.80	0.09	MNDS004308	HQQC	1.	
NW10-A	2.4	4.0	22.80	21.40	0.09	MNDS004310	HQQC	1.0	
NW10-A	4.0	5.0	7.46	7.60	0.06	MNDS004311	HQQC	:	
NW10-A	5.0	6.3	5.73	5.70	0.05	MNDS004312	HQQC	1.3	
NW10-A	6.3	6.9	1.98	2.00	0.03	MNDS004313	HQQC	0.	
NW10-A	6.9	8.0	2.51	2.60	0.04	MNDS004314	HQQC	1.:	
NW10-A	8.0	10.0	6.64	6.10	0.04	MNDS004315	HQQC	:	
NW10-A	10.0	11.0	15.05	11.30	0.05	MNDS004316	HQQC	:	
NW10-A	11.0	12.1	9.89	9.20	0.07	MNDS004317	HQQC	1.3	
NW10-A	12.1	14.0	2.65	2.60	0.30	MNDS004318	HQQC	1.9	
NW10-A	14.0	16.0	3.30	3.30	0.16	MNDS004320	HQQC	:	
NW10-A	16.0	18.0	2.66	2.60	0.91	MNDS004321	HQQC	:	
NW10-A	18.0	19.0	9.39	9.40	0.34	MNDS004322	HQQC	:	
NW10-A	19.0	20.9	11.80	11.60	0.20	MNDS004324	HQQC	1.9	
NW10-A	20.9	22.0	2.90	2.90	1.84	MNDS004325	HQQC	1.1	
NW10-A	22.0	24.0	2.22	2.10	2.11	MNDS004326	HQQC	2	
NW10-A	24.0	26.0	2.54	2.50	2.21	MNDS004327	HQQC		

|--|

Razaty No	rtnwest	- Drillir	iole assays	results received	a as of 17th	of September 20		
Drillhole	from	to	Carbon %	Total Graphitic Carbon%	Sulphur%	SampleName	Core Size	Sample Length
NW10-A	26.0	27.4	2.85	2.70	2.00	MNDS004328	HQQC	1.3
NW10-A	20.0	29.0	3.07	3.00		MNDS004328	HQQC	1.5
NW10-A	27.4	31.0	2.14	2.10		MNDS004329	HQQC	1.0.
NW10-A	31.0	33.0	2.14	2.10		MNDS004330	HQQC	
NW10-A	33.0	34.0	1.69	2.80		MNDS004332	HQQC	
NW10-A	34.0	36.0	3.92	3.80		MNDS004332	HQQC	
NW10-A	36.0	38.0	3.68	3.70		MNDS004335	HQQC	
NW10-A	38.0	39.0	5.14	4.80		MNDS004335	HQQC	
NW10-A	39.0	40.7	8.08	7.80		MNDS004337	HQQC	1.
NW10-A	40.7	42.0	2.07	2.00		MNDS004337	HQQC	1.
NW10-A	40.7	44.0	2.07	2.00		MNDS004338	HQQC	1.
NW10-A	44.0	46.0	2.15	2.10		MNDS004339	HQQC	
NW10-A	46.0	48.0	1.72	2.50		MNDS004341	HQQC	
NW10-A	48.0	49.0	2.58	2.50		MNDS004342	HQQC	
NW10-A	49.0	50.9	2.73	2.50		MNDS004343	HQQC	1.8
NW10-A	45.0	2.0	1.21	1.20		MNDS004343	HQQC	1.0
NW10-B	2.0	4.0	1.08	1.20		MNDS004267	HQQC	
NW10-B	4.0	6.0	1.08	1.00		MNDS004268	HQQC	
NW10-B	6.0	7.6	2.27	2.10		MNDS004209	HQQC	1.
NW10-B	7.6	8.1	7.43	7.60		MNDS004270	HQQC	0.
NW10-B	8.1	9.8	1.04	1.00		MNDS004271 MNDS004272	HQQC	1.
NW10-B	9.8	10.4	3.96	4.00		MNDS004272	HQQC	0.5
NW10-B	10.4	11.8	0.82	0.80		MNDS004275	HQQC	1.
NW10-B	11.8	14.0	6.75	7.20		MNDS004277	HQQC	2.
NW10-B	14.0	14.0	4.54	4.50		MNDS004278	HQQC	0.0
NW10-B	14.0	16.0	2.11	2.00		MNDS004279	HQQC	0.0
NW10-B	16.0	18.0	1.24	1.20		MNDS004280	HQQC	
NW10-B	18.0	19.6	4.69	4.70		MNDS004282	HQQC	1.
NW10-B	19.6			5.50		MNDS004283	HQQC	1.
NW10-B	21.0	23.0	11.68	12.00		MNDS004284	HQQC	
NW10-B	23.0	25.0	11.89	12.00		MNDS004285	HQQC	
NW10-B	25.0	27.0	10.76	11.00		MNDS004286	HQQC	
NW10-B	27.0	29.0	8.38	8.60		MNDS004288	HQQC	
NW10-B	29.0	30.0	1.81	1.80		MNDS004289	HQQC	
NW-10-B	30	31.15	6.21	5.9		MNDS004290	HQQC	1.1
NW10-B	31.2	33.0	0.97	0.90		MNDS004291	HQQC	1.8
NW10-B	33.0	35.0	2.14	2.00		MNDS004292	HQQC	
NW10-B	35.0	35.7	3.80	3.60		MNDS004293	HQQC	0.

Razafy No	rthwest	- Drillh	iole assays	results received	as of 17th	of September 20	021	
Drillhole	from	to	Carbon %	Total Graphitic Carbon%	Sulphur%	SampleName	Core Size	Sample Length
NW10-B	35.7	37.0	9.34	9.30	1.55	MNDS004294	HQQC	1.3
NW10-B	37.0	38.8	4.53	4.30	2.40	MNDS004295	HQQC	1.8
NW10-B	38.8	40.0	2.35	2.20	3.00	MNDS004296	HQQC	1.3
NW10-B	40.0	41.0	3.22	3.10	4.19	MNDS004298	HQQC	:
NW10-B	41.0	42.4	3.68	3.50	3.32	MNDS004299	HQQC	1.4
NW10-B	42.4	44.0	10.69	10.80	3.35	MNDS004300	HQQC	1.0
NW10-B	44.0	46.0	11.36	10.90	8.72	MNDS004301	HQQC	
NW10-B	46.0	48.0	14.09	13.90	9.21	MNDS004303	HQQC	
NW10-B	48.0	49.0	13.28	12.90	14.65	MNDS004304	HQQC	
NW10-B	49.0	50.1	20.04	20.10	9.97	MNDS004305	HQQC	1.0
NW20-A	0.0	2.1	3.82	3.60	0.11	MNDS004227	HQQC	2.
NW20-A	3.9	5.0	2.70	2.60	0.03	MNDS004228	HQQC	1.1
NW20-A	5.0	7.0	1.01	1.00	0.02	MNDS004229	HQQC	
NW20-A	7.0	9.0	2.23	2.00	0.04	MNDS004230	HQQC	
NW20-A	9.0	9.5	3.93	3.90	0.05	MNDS004232	HQQC	0.4
NW20-A	9.5	11.0	6.92	6.70	0.06	MNDS004233	HQQC	1.5
NW20-A	11.0	11.7	3.78	3.70	0.41	MNDS004234	HQQC	0.
NW20-A	11.7	13.0	2.04	2.00	0.28	MNDS004235	HQQC	1.
NW20-A	13.0	15.0	3.11	2.90	0.07	MNDS004236	HQQC	
NW20-A	20.5	21.8	20.63	20.00	0.14	MNDS004237	HQQC	1.
NW20-A	31.0	33.0	1.97	1.90	2.67	MNDS004238	HQQC	
NW20-A	33.0	35.0	1.69	1.60	2.70	MNDS004240	HQQC	
NW20-A	35.0	37.0	12.30	11.90	0.97	MNDS004241	HQQC	
NW20-A	37.0	39.0	7.12	7.00	0.65	MNDS004243	HQQC	
NW20-A	39.0	39.8	11.64	11.30	2.32	MNDS004244	HQQC	0.7
NW20-A	39.8	41.8	2.68	2.60	1.93	MNDS004245	HQQC	
NW20-A	41.8	43.3	10.62	10.20	6.59	MNDS004246	HQQC	1.
NW20-A	43.3	44.3	4.24	4.20	2.07	MNDS004247	HQQC	1.0
NW20-A	44.3	46.0	13.76	13.60	1.83	MNDS004248	HQQC	1.
NW20-A	46.0	48.0	15.07	14.60	1.79	MNDS004249	HQQC	
NW20-A	48.0	50.1	10.90	10.60	3.81	MNDS004250	HQQC	2.0
NW20-C	0.0	0.5	1.46	1.40	0.05	MNDS004251	HQQC	0.
NW20-C	0.5	2.0	11.10	10.90	0.09	MNDS004253	HQQC	1.
NW20-C	2.0	4.0	4.60	4.60	0.04	MNDS004254	HQQC	
NW20-C	4.0	6.0	10.24	7.40	0.08	MNDS004255	HQQC	
NW20-C	6.0	8.0	7.76	5.50	0.07	MNDS004256	HQQC	
NW20-C	8.0	10.0	1.32	1.20	0.05	MNDS004257	HQQC	
NW20-C	10.0	12.0	0.62	0.40	0.04	MNDS004258	HQQC	

Delus for NL £ 17+b f C. 2021

Razaty No	rtnwest	- Drillin	iole assays	results received	a as of 17th	of September 20	021	
Drillhole	from	to	Carbon %	Total Graphitic Carbon%	Sulphur%	SampleName	Core Size	Sample Length
NW20-C	13.0	13.7	0.23	0.20	0.04	MNDS004259	HQQC	0.7
NW20-C	13.7	15.8	13.62	12.20		MNDS004255	HQQC	2.1
NW20-C	15.8	16.2	0.30	0.30		MNDS004262	HQQC	0.4
NW20-C	15.8	16.7	9.92	9.10		MNDS004262	HQQC	0.4
NW20-C	16.7	18.0	0.34	0.20		MNDS004265	HQQC	1.3
NW20-C	18.0	20.0	0.70	0.20		MNDS004265	HQQC	2
NW30-A	0.5	2.5	6.88	6.80		MNDS004135	HQQC	2
NW30-A	2.5	3.6	4.49	4.30		MNDS004135	HQQC	1.1
NW30-A	3.6	5.0	6.20	5.80		MNDS004130	HQQC	1.4
NW30-A	5.0	6.7	3.42	3.30		MNDS004137	HQQC	1.7
NW30-A	6.7	8.0	0.52	0.40		MNDS004135	HQQC	1.3
NW30-A	8.0	9.2	1.99	1.80		MNDS004140	HQQC	1.22
NW30-A	9.2	11.0	10.36	8.50		MNDS004141 MNDS004142	HQQC	1.78
NW30-A	11.0	13.0	10.30	10.30		MNDS004142		1.76
NW30-A	13.0	15.0	11.49	10.30		MNDS004143	HQQC HQQC	2
NW30-A	15.0	17.0	16.55	11.20		MNDS004144 MNDS004145		2
	17.0	17.0	18.07			MNDS004145	HQQC	0.95
NW30-A		18.5		17.80		MNDS004148 MNDS004147	HQQC	
NW30-A	18.0		8.19	8.00		MNDS004147 MNDS004148	HQQC	0.55
NW30-A	18.5	20.0	8.28	8.10 6.30			HQQC	1.5
NW30-A	20.0	22.0	6.35			MNDS004150	HQQC	2
NW30-A	22.0	24.0	1.98	2.10		MNDS004151	HQQC	
NW30-A	24.0	26.0	4.94	4.90		MNDS004152	HQQC	2
NW30-A	26.0	26.3	12.89	12.70		MNDS004153	HQQC	0.3
NW30-A	26.3	28.0	0.19	0.30		MNDS004154	HQQC	1.7
NW30-A	28.0	30.0	6.14	6.00		MNDS004156	HQQC	2
NW30-A	30.0	32.0	5.72	5.60		MNDS004157	HQQC	2
NW30-A	32.0	34.0	5.45	5.30		MNDS004158	HQQC	2
NW30-A	34.0	36.0		5.00		MNDS004159	HQQC	2
NW30-A	36.0	38.0	6.30	6.00		MNDS004160	HQQC	2
NW30-A	38.0	40.0	4.56	4.50		MNDS004161	HQQC	2
NW30-A	40.0	42.0	6.86	6.60		MNDS004162	HQQC	2
NW30-A	42.0	44.0	5.66	5.40		MNDS004163	HQQC	2
NW30-A	44.0	46.0	3.61	3.60		MNDS004164	HQQC	2
NW30-A	46.0	48.0	3.71	3.70		MNDS004166	HQQC	2
NW30-A	48.0	50.0	5.37	5.20		MNDS004167	HQQC	2
NW30-A	50.0	50.8	5.27	5.20		MNDS004168	HQQC	0.82
NW30-B	0.0	2.0	2.09	2.10		MNDS004169	HQQC	2
NW30-B	2.0	3.1	3.73	3.60	0.05	MNDS004170	HQQC	1.1

Razaty No	rtnwest	- Drillir	iole assays	results received	a as of 17th	of September 20	021	
Drillhole	rillhole from		Carbon %	Total Graphitic Carbon%	Sulphur%	SampleName	Core Size	Sample Length
NW30-B	3.1	5.0	10.24	10.20	0.06	MNDS004171	HQQC	1.9
NW30-B	5.0	7.0	14.55	14.90		MNDS004172	HQQC	2
NW30-B	7.0	9.0	9.06	9.40		MNDS004173	HQQC	2
NW30-B	9.0	11.0	7.34	7.30		MNDS004174	HQQC	2
NW30-B	11.0	11.4	10.26	10.10		MNDS004177	HQQC	0.4
NW30-B	11.4	13.0	0.33	0.30		MNDS004178	HQQC	1.6
NW30-B	13.0	15.0	2.25	2.20		MNDS004179	HQQC	2.0
NW30-B	15.0	17.0	4.25	4.20		MNDS004180	HQQC	2
NW30-B	17.0	17.9	11.40	11.30		MNDS004181	HQQC	0.85
NW30-B	17.9	19.0	19.14	19.60		MNDS004182	HQQC	1.15
NW30-B	19.0	21.0	24.72	25.00		MNDS004182	HQQC	2
NW30-B	21.0	23.0	16.37	16.60		MNDS004185	HQQC	2
NW30-B	23.0	25.0	14.59	10.00		MNDS004184	HQQC	2
NW30-B	25.0	27.0	12.92	14.50		MNDS004185	HQQC	2
NW30-B	27.0	29.0	13.28	13.00		MNDS004187 MNDS004188	HQQC	2
NW30-B	29.0	31.0	8.12	8.00		MNDS004188	HQQC	2
NW30-B	31.0	33.0	6.64	6.50		MNDS004189	HQQC	2
NW30-B	33.0	35.0	3.77	3.70		MNDS004190		2
NW30-B	35.0	37.0	4.98	4.70		MNDS004191 MNDS004192	HQQC	2
NW30-B		39.0	4.98	4.70		MNDS004192 MNDS004193	HQQC	2
	37.0						HQQC	2
NW-30-B	39	41 43.0	6.29	6		MNDS004194	HQQC	2
NW30-B	41.0		5.96	5.60		MNDS004195	HQQC	2
NW30-B	43.0	45.0	2.19	2.00		MNDS004196	HQQC	
NW30-B	45.0	47.0	1.68	1.50		MNDS004198	HQQC	2
NW30-B	47.0	49.0	1.46	1.30		MNDS004199	HQQC	
NW30-B	48.0	51.0	2.54	2.40		MNDS004200	HQQC	3
NW30-B	51.0	51.3	3.96	3.70		MNDS004202	HQQC	0.32
NW30-C	1.0	1.7	1.67	1.70			HQQC	0.65
NW30-C	1.7	3.0	4.45	4.50		MNDS004205		1.35
NW30-C	3.0	5.0	2.41	2.40		MNDS004206		2
NW30-C	5.0	7.0	5.94	6.00		MNDS004207	HQQC	2
NW30-C	7.0	7.5	2.31	2.50		MNDS004208	HQQC	0.5
NW30-C	7.5	9.0	0.60	0.60		MNDS004209	HQQC	1.5
NW30-C	9.0	11.0	12.22	10.60		MNDS004210	HQQC	2
NW30-C	11.0	11.9	5.94	4.60		MNDS004212	HQQC	0.9
NW30-C	11.9	13.0	5.58	4.30		MNDS004213	HQQC	1.1
NW30-C	13.0	15.0	1.24	1.00		MNDS004214		2
NW30-C	15.0	16.3	1.20	1.10	0.21	MNDS004215	HQQC	1.25

Razafy No	rthwest	: - Drillh	nole assays	results received	d as of 17th	of September 20	021	
Drillhole	Drillhole from		Carbon %	Total Graphitic Carbon%	Sulphur%	SampleName	Core Size	Sample Length
NW30-C	21.1	23.0	1.48	1.40	0.74	MNDS004216	HQQC	1.9
NW30-C	23.0	25.0	0.58	0.50	1.07	MNDS004217	HQQC	:
NW30-C	25.0	25.7	0.56	0.50	0.63	MNDS004219	HQQC	0.
NW30-C	25.7	27.0	32.74	32.20	0.68	MNDS004220	HQQC	1.
NW30-C	27.0	28.2	28.08	28.40	1.07	MNDS004222	HQQC	1.1
NW30-C	28.2	30.0	7.15	7.20	1.27	MNDS004223	HQQC	1.8
NW30-C	30.0	30.8	11.07	10.80	1.19	MNDS004224	HQQC	0.
NW30-C	30.8	32.0	0.06	0.01	0.12	MNDS004225	HQQC	1.
NW30-C	32.0	34.0	1.03	1.00	0.42	MNDS004226	HQQC	
NW40-A	0.3	1.0	17.49	17.50	0.66	MNDS004370	HQQC	0.7
NW40-A	1.0	2.0	3.08	3.00	1.80	MNDS004371	HQQC	
NW40-A	2.0	3.5	1.63	1.50	0.17	MNDS004372	HQQC	1.
NW40-A	3.5	5.0	11.03	10.60	0.10	MNDS004373	HQQC	1.
NW40-A	5.0	7.0	21.89	19.50	0.04	MNDS004375	HQQC	
NW40-A	7.0	9.0	23.66	21.60	0.04	MNDS004376	HQQC	
NW40-A	9.0	11.0	18.25	16.90	0.05	MNDS004377	HQQC	
NW40-A	11.0	13.0	16.59	15.70	0.19	MNDS004379	HQQC	
NW40-A	13.0	15.0	21.41	17.10	1.36	MNDS004380	HQQC	
NW40-A	15.0	16.0	26.42	22.60	1.30	MNDS004381	HQQC	
NW40-A	16.0	18.0	12.29	12.20	0.97	MNDS004382	HQQC	
NW40-A	18.0	19.6	10.84	10.60	0.84	MNDS004383	HQQC	1.6
NW40-A	19.6	20.7	1.12	1.10	0.23	MNDS004384	HQQC	1.0
NW-40-A	20.65	22	12.28	12.2	0.08	MNDS004385	HQQC	1.3
NW40-A	22.0	23.7	12.20	11.80	0.13	MNDS004387	HQQC	1.6
NW40-A	23.7	24.2	2.14	2.10	0.25	MNDS004388	HQQC	0.5
NW40-A	24.3	26.0	21.14	20.20	0.04	MNDS004390	HQQC	1.7
NW40-A	26.0	28.0	12.43	12.30	0.26	MNDS004391	HQQC	
NW40-A	28.0	30.0	8.66	8.40	2.70	MNDS004392	HQQC	
NW40-A	30.0	31.5	7.46	7.30	4.47	MNDS004393	HQQC	1
NW40-A	31.5	33.0	4.63	4.60	6.03	MNDS004394	HQQC	1
NW40-A	33.0	35.0	4.55	4.50	5.17	MNDS004395	HQQC	
NW40-A	35.0	36.3	3.68	3.50	4.30	MNDS004396	HQQC	1.2
NW40-A	36.3	37.0	7.00	6.70	2.03	MNDS004397	HQQC	0.7
NW40-A	37.0	38.4	15.56	15.50	6.00	MNDS004398	HQQC	1
NW40-A	38.4	40.0	0.25	0.20	1.72	MNDS004399	HQQC	1
NW40-A	40.0	42.0	0.13	0.01	0.22	MNDS004400	HQQC	
NW40-B	14.0	16.0	3.18	3.00	0.07	MNDS004402	HQQC	
NW40-B	16.0	17.2	3.30	3.10	0.07	MNDS004403	HQQC	1.

Razaty No	rtnwest	- Drillin	iole assays	results received	as of 17th	21	1		
Drillhole from		to	Carbon %	Total Graphitic Carbon%	Sulphur%	SampleName	Core Size	Sample Length	
NW40-B	17.2	18.0	11.60	10.30	0.08	MNDS004404	HQQC	0.8	
NW40-B	18.0	19.7	12.37	12.30		MNDS004405	HQQC	1.7	
NW40-B	19.7	21.7	1.00	0.90	0.06	MNDS004406	HQQC	2	
NW40-B	21.7	22.9	13.86	13.40		MNDS004408	HQQC	1.15	
NW40-B	22.9	24.0	3.12	3.10		MNDS004409	HQQC	1.15	
NW40-B	24.0	25.7	1.97	1.90	0.93	MNDS004410	HQQC	1.7	
NW40-B	25.7	27.0	14.87	14.80	2.49	MNDS004411	HQQC	1.3	
NW40-B	27.0	29.0	27.08	24.50	5.25	MNDS004412	HQQC	2	
NW40-B	29.0	31.0	11.71	11.70	3.91	MNDS004413	HQQC	2	
NW40-B	31.0	33.0	13.09	12.90	3.31	MNDS004414	HQQC	2	
NW40-B	33.0	35.0	19.37	18.50	2.37	MNDS004416	HQQC	2	
NW40-B	35.0	36.4	10.97	10.70	2.63	MNDS004417	HQQC	1.4	
NW40-B	36.4	37.2	0.16	0.10	1.18	MNDS004418	HQQC	0.8	
NW40-B	37.2	39.0	14.07	13.60	1.29	MNDS004419	HQQC	1.8	
NW40-B	39.0	41.0	31.09	28.90	3.67	MNDS004421	HQQC	2	
NW40-B	41.0	43.0	13.86	14.00	1.78	MNDS004422	HQQC	2	
NW40-B	43.0	45.0	4.73	4.50		MNDS004423	HQQC	2	
NW40-B	45.0	46.0	4.02	3.80	2.58	MNDS004424	HQQC	1	
NW40-B	46.0	47.2	4.37	4.10	2.53	MNDS004425	HQQC	1.2	
NW40-B	47.2	49.0	0.65	0.60	1.21	MNDS004426	HQQC	1.8	
NW40-B	49.0	50.0	0.94	0.90	1.92	MNDS004427	HQQC	1.04	
NW60-A	0.0	1.0	0.15	0.30	0.05	MNDS004596	HQQC	1	
NW60-A	1.0	2.9	0.54	0.70	0.06	MNDS004597	HQQC	1.9	
NW60-A	7.4	9.0	2.21	2.30	0.03	MNDS004601	HQQC	1.6	
NW60-A	9.0	11.0	2.11	2.10	0.05	MNDS004602	HQQC	2	
NW60-A	15.0	17.0	3.53	3.60	0.14	MNDS004603	HQQC	2	
NW60-A	17.0	18.4	3.35	3.40	0.97	MNDS004604	HQQC	1.4	
NW60-A	42.0	44.0	4.99	4.90	2.21	MNDS004619	HQQC	2	
NW60-A	44.0	46.0	0.91	0.90	1.63	MNDS004620	HQQC	2	
NW60-B	12.0	14.0	1.17	1.10	0.45	MNDS004570	HQQC	2	
NW60-B	14.0	16.0	1.03	0.90	0.11	MNDS004571	HQQC	2	
NW60-B	17.0	19.0	1.21	1.10	2.22	MNDS004573	HQQC	2	
NW60-B	19.0	20.0	0.87	0.80	2.39	MNDS004575	HQQC	1	
NW60-B	20.0	21.1	2.05	2.00	0.48	MNDS004576	HQQC	1.1	
NW60-B	40.4	41.8	0.39	0.30	1.16	MNDS004587	HQQC	1.4	
NW70-A	10.6	11.9	0.23	0.30	0.14	MNDS004436	HQQC	1.35	
NW70-A	24.2	25.2	3.30	3.30	1.03	MNDS004444	HQQC	1	
NW70-A	38.5	40.0	1.58	1.50	2.57	MNDS004454	HQQC	1.5	

Razaty No	rthwest	- Drilli	iole assays	results received	d as of 17th	of September 20	21	
Drillhole from		to	Carbon %	Total Graphitic Carbon%	Sulphur%	SampleName	Core Size	Sample Length
NW70-A	40.0	42.0	2.24	2.10	3.06	MNDS004455	HQQC	
NW70-A	42.0	44.0	3.67	3.50	3.69	MNDS004456	HQQC	:
NW70-A	44.0	46.0	0.04	0.01	2.21	MNDS004457	HQQC	1.9
NW70-B	4.0	6.0	0.21	0.20	0.04	MNDS004498	HQQC	:
NW70-B	6.0	7.7	1.92	1.90	0.05	MNDS004499	HQQC	1.7
NW70-B	10.5	12.0	1.32	1.30	0.28	MNDS004503	HQQC	1.5
NW70-B	12.0	14.0	0.90	1.00	0.52	MNDS004504	HQQC	
NW70-B	16.0	18.0	2.00	2.00	0.83	MNDS004505	HQQC	
NW70-B	18.0	19.2	1.66	1.70	0.95	MNDS004506	HQQC	1.3
NW70-B	22.6	24.0	2.39	2.30	1.61	MNDS004509	HQQC	1.4
NW70-B	24.0	26.0	1.69	1.60	2.54	MNDS004511	HQQC	
NW70-B	26.0	27.0	1.21	1.10	2.98	MNDS004513	HQQC	
NW70-B	27.0	28.5	2.23	2.00	1.92	MNDS004514	HQQC	1.
NW70-B	35.4	37.0	0.12	0.20	0.21	MNDS004519	HQQC	1.
NW70-B	37.0	38.3	0.13	0.10	0.74	MNDS004520	HQQC	1.
NW70-B	39.1	40.0	0.07	0.20	0.27	MNDS004523	HQQC	0.
NW70-B	40.0	41.2	0.29	0.40	0.33	MNDS004524	HQQC	1.
NW70-B	42.8	43.5	1.28	1.20	4.25	MNDS004526	HQQC	0.
NW70-B	45.0	46.0	0.05	0.01	1.26	MNDS004528	HQQC	1.0
NW70-B	46.0	47.0	0.05	0.01	1.13	MNDS004529	HQQC	
NW70-B	47.0	48.6	5.25	5.00	1.37	MNDS004530	HQQC	1.
NW80-A	0.5	2.0	0.98	0.90	0.20	MNDS004545	HQQC	1.
NW80-A	2.0	4.0	0.53	0.40	0.24	MNDS004547	HQQC	
NW80-A	4.7	6.0	1.23	1.20	0.03	MNDS004550	HQQC	1.
NW80-A	6.0	8.0	0.17	0.10	0.79	MNDS004551	HQQC	
NW80-A	13.0	15.0	1.72	1.70	0.08	MNDS004553	HQQC	
NW80-A	15.0	16.5	1.83	1.80	0.12	MNDS004554	HQQC	1.
NW80-A	19.9	21.7	0.08	0.01	1.17	MNDS004557	HQQC	1.8
NW80-A	23.7	25.0	0.97	0.90		MNDS004559	HQQC	1.
NW80-A	25.0	26.0	0.39	0.30	1.18	MNDS004560	HQQC	
NW80-A	26.0	27.2	0.03	0.01	1.40	MNDS004561	HQQC	1.
NW80-A	34.0	36.0	2.49	2.30	2.52	MNDS004567	HQQC	
NW80-A	36.0	38.0	1.42	1.30		MNDS004568	HQQC	
NW80-B	11.0	12.1	10.25	9.20		MNDS004539	HQQC	1.
NW80-B	15.0	17.0	2.58	2.40		MNDS004543	HQQC	
NW80-B	17.0	19.0	0.93	1.00		MNDS004544	HQQC	
NW80-C	10.6	12.0	2.23	2.20	0.18	MNDS004469	HQQC	1.4
NW80-C	12.0	14.0	2.21	2.10		MNDS004471	HQQC	:

|--|

Drillhol			Carbon	Total		SampleNam	Core	Sample
e	from	to	%	Graphitic Carbon%	Sulphur%	e	Size	Length
NW80-C	16.0	18.0	1.18	1.10	2.68	MNDS004472	HQQC	
NW80-C	18.0	19.4	4.13	4.00		MNDS004473	HQQC	1.3
NW80-C	23.8	24.8	0.09	0.20		MNDS004477	HQQC	
NW80-C	24.8	26.0	0.60	0.60		MNDS004478	HQQC	1
NW80-C	26.0	28.0	0.94	0.90			HQQC	-
NW80-C	30.6	31.6	6.93	6.60			HQQC	
NW80-C	43.2	44.3	0.16	0.20		MNDS004493		1.(
NW90-A	2.9	4.0	1.28	1.40	0.09	MNDS004655	HQQC	1
NW90-A	4.0	6.0	2.45	2.60	0.08	MNDS004656		
NW90-A	6.0	7.0	1.46	1.50		MNDS004657	HQQC	
NW90-A	7.0	8.1	0.89	0.90	0.02	MNDS004658	HQQC	1
NW90-A	18.3	20.0	2.27	2.20	0.04	MNDS004666	HQQC	1
NW90-A	20.0	21.0	0.45	0.50	0.78	MNDS004667	HQQC	
NW90-A	21.0	22.6	0.21	0.20	0.92	MNDS004668	HQQC	1
NW90-A	23.7	24.4	0.04	0.10	1.39	MNDS004670	HQQC	0
NW90-A	25.5	27.2	0.09	0.20	0.86	MNDS004673	HQQC	1
NW90-A	37.8	39.0	2.18	2.00	2.30	MNDS004681	HQQC	1
NW90-A	39.0	40.0	2.64	2.60	2.15	MNDS004682	HQQC	
NW90-A	40.0	41.4	2.59	2.50	2.93	MNDS004683	HQQC	1.
NW90-A	41.4	42.0	0.06	0.10	0.76	MNDS004684	HQQC	0.
NW90-A	42.0	43.9	0.26	0.20	1.39	MNDS004686	HQQC	1
NW90-A	43.9	45.0	1.90	1.70	2.47	MNDS004687	HQQC	1
NW90-A	45.0	46.0	2.05	2.00	2.57	MNDS004688	HQQC	
NW90-A	46.0	47.1	3.61	3.50	2.36	MNDS004689	HQQC	1.
NW90-B	1.0	3.0	0.99	1.00	0.08	MNDS004692	HQQC	
NW90-B	3.0	5.0	1.07	1.10	0.07	MNDS004693	HQQC	
NW90-B	8.5	10.0	5.22	5.20	0.04	MNDS004698	HQQC	1
NW90-B	10.0	12.0	3.89	3.90	0.21	MNDS004699	HQQC	
NW90-B	24.0	26.0	1.42	1.30	2.75	MNDS004700	HQQC	
NW90-B	26.0	27.1	2.57	2.50		MNDS004701		1.
NW90-B	27.1	28.1	0.57	0.60		MNDS004702		1.
NW90-B	29.9	31.0	2.40	2.40	1.72	MNDS004704	HQQC	1
NW90-B	31.0	32.0	1.25	1.20	1.59	MNDS004706	HQQC	
NW90-B	33.5	35.0	0.55	0.60		MNDS004708		1
NW90-B	35.0	35.9	0.03	0.01		MNDS004709		0
NW90-B	38.5	40.4	0.04	0.01		MNDS004712		1
NW90-B	42.7	43.3	0.01	0.01		MNDS004716		0
NW100-A	6.0	8.0	4.15	4.10		MNDS004621		
NW100-A	8.0	9.3	3.10	3.20			HQQC	1
NW100-A		19.5	1.30	1.20		MNDS004629		
NW100-A	20.6	22.4	3.45	3.50			HQQC	1
NW100-A NW100-A		37.4 51.2		0.40		MNDS004642 MNDS004651		1

Appendix 3

Razafy Northwest - Trench assays results received as of 17th of September 2021

				Total			
Trench	from	to	Carbon %	Graphitic	Sulphur%	SampleName	Sample Length
				Carbon%			
MNT068	0	2	1.11	1.1	0.13	MNTS 003201	2
MNT068	2	4	3.66	3.6	0.15	MNTS 003202	2
MNT068	4	6	2.54	2.5	0.25	MNTS 003203	2
MNT068	6	8	0.86	0.8	0.08	MNTS 003204	2
MNT068	8	10	6.02	6	0.14	MNTS 003205	2
MNT068	10	12	8.83	8.8	0.1	MNTS 003206	2
MNT068	12	14	9.66	9	0.08	MNTS 003207	2
MNT068	14	16	8.72	8.3	0.06	MNTS 003208	2
MNT068	16	18	11.8	11.3	0.08	MNTS 003209	2
MNT068	18	20	3.7	2.8	0.05	MNTS 003210	2
MNT068	20	22	8.56	8.3	0.07	MNTS 003211	2
MNT068	22	24	5.75	5.6	0.07	MNTS 003212	2
MNT068	24	26	6.64	6.1	0.07	MNTS 003213	2
MNT068	26	28	10	9.8	0.08	MNTS 003214	2
MNT068	28	30	0.35	0.3	0.06	MNTS 003215	2
MNT068	30	32	7.02	6.9	0.09	MNTS 003216	2
MNT068	32	34	7.7	7.7	0.07	MNTS 003217	2
MNT068	34	36	5.04	4.8	0.23	MNTS 003218	2
MNT068	36	38	1.98	1.8	0.07	MNTS 003219	2
MNT069	0	2	3.11	3	0.25	MNTS 003220	2
MNT069	2	4	9.2	8.9	0.09	MNTS 003221	2
MNT069	4	6	2.63	2.4	0.12	MNTS 003222	2
MNT069	6	8	5.08	5	0.16	MNTS 003223	2
MNT069	8	10	6.61	6.6	0.26	MNTS 003224	2
MNT069	10	12	14.18	13.9	0.55	MNTS 003225	2
MNT069	12	14	15.71	15.5	0.06	MNTS 003226	2
MNT069	14	16	15.76	15.1	0.33	MNTS 003227	2
MNT069	16	18	13.55	13.4	0.86	MNTS 003228	2
MNT069	18	20	14.17	14.1	0.59	MNTS 003229	2
MNT069	20	22	10.83	10.5	0.64	MNTS 003230	2
MNT069	22	24	1.59	1.6	0.21	MNTS 003231	2
MNT069	24	26	1.45	1.5	0.11	MNTS 003232	2

Appendix 4

Razafy Northwest - Trench Location List

Trench	Easting	Northing	RL	Azimuth	Dip	Trench Length
MNT068	485517	7287043	302	233	0	38
MNT069	485344	7288001	301	233	0	26

-